Knowledge-based recommendation

Basic I/0O Relationship

/-

Lﬁ Knowledge-based: "Tell me what fits
User profile & based on my needs"
contextual prameters \'ll
v
item | score
i 0.9
. iz 1
i3 0.3
ﬁue Genra | Actors | ... v
Product features < component list
0
o /
_—

Knowledge models

Why do we need knowledge-based recommendation?

= Products with low number of available ratings

= Time span plays an important role
— five-year-old ratings for computers
— user lifestyle or family situation changes

= Customers want to define their requirements explicitly
— "the color of the car should be black"

Knowledge-based recommender systems

= Constraint-based
— based on explicitly defined set of recommendation rules
— fulfill recommendation rules

= Case-based
— based on different types of similarity measures
— retrieve items that are similar to specified requirements

= Both approaches are similar in their conversational recommendation
process

— users specify the requirements
— systems try to identify solutions
— if no solution can be found, users change requirements

Constraint-based recommender systems

= Knowledge base
— usually mediates between user model and item properties
— variables
= user model features (requirements), Item features (catalogue)
— set of constraints

= |ogical implications (IF user requires A THEN proposed item should possess
feature B)

» hard and soft/weighted constraints
= solution preferences

= Derive a set of recommendable items
— fulfilling set of applicable constraints
— applicability of constraints depends on current user model
— explanations — transparent line of reasoning

Constraint-based recommendation tasks

= Find a set of user requirements such that a subset of items fulfills all
constraints

— ask user which requirements should be relaxed/modified such that some items exist that
do not violate any constraint

= Find a subset of items that satisfy the maximum set of weighted
constraints
— similar to find a maximally succeeding subquery (XSS)
— all proposed items have to fulfill the same set of constraints
— compute relaxations based on predetermined weights

= Rank items according to weights of satisfied soft constraints
— rank items based on the ratio of fulfilled constraints
— does not require additional ranking scheme

Constraint-based recommendation problem

= Select items from this catalog that match the user's requirements

P, 148 8.0 4x 2.5 no no yes

P, 182 8.0 5% 2.7 yes yes no
P 189 8.0 10x 2.5 yes yes no
P, 196 10.0 12x 2.7 yes no yes
P 151 7.1 3% 3.0 yes yes no
P 199 9.0 3% 3.0 yes yes no
P, 259 10.0 3% 3.0 yes yes no
Pg 278 9.1 10x 3.0 yes yes yes

= User's requirements can, for example, be
— "the price should be lower than 300 €"
— "the camera should be suited for sports photography"

Constraint satisfaction problem (CSP)

= A knowledge-based RS with declarative knowledge representation

CSP (X, U X,,D,SRS UKB U 1)

= Def.

X,, X,: Variables describing product and user model with domain D

KB: Knowledge base with domain restrictions (e.g. if purpose=on travel then
lower focal length < 28mm)

SRS: Specific requirements of user (e.g. purpose = on travel)
I: Product catalog

= Solution: Assignment tuple @ VX e X, (X=V) € & Av e dom(X)

SI.SRS UKB U I U@ is satisfiable

Conjunctive query

= Different from a constraint solver

— itis not to find valid instantiations for a CSP

= Conjunctive query is executed in the item catalog
— aconjunctive database query
— a set of selection criteria that are connected conjunctively

= glcriteria](P)
— P: product assortment
— example: o[mpix=10, price<300](P) = {p4, p7}

Interacting with constraint-based recommenders

= The user specifies his or her initial preferences
— all at once or
— incrementally in a wizard-style
— interactive dialog

= The user is presented with a set of matching items
— with explanation as to why a certain item was recommended

= The user might revise his or her requirements
— see alternative solutions
— narrow down the number of matching items

-10 -

Defaults

Support customers to choose a reasonable alternative
— unsure about which option to select
— simply do not know technical details

Type of defaults
— static defaults
— dependent defaults
— derived defaults

Selecting the next question
— most users are not interested in specifying values for all properties
— identify properties that may be interesting for the user

-11 -

Unsatisfied requirements

= "no solution could be found"

= Constraint relaxation
— the goal is to identify relaxations to the original set of constraints

— relax constraints of a recommendation problem until a corresponding solution
has been found

= Users could also be interested in repair proposals
— recommender can calculate a solution by adapting the proposed requirements

-12 -

Deal with unsatisfied requirements

= Calculate diagnoses for unsatisfied requirements
(1) CSy={ry, 1o}

wg o w

(2) GSZ Io, r4} (3) CSS—{H, r3}

={roral do={ry,r = ={sure)

= The diagnoses derived from the conflict sets {CS,,CS.,CS:} are {d.:{r,, r},
dz:{rz, r4},d3.'{rz, ra}}

-13 -

QuickXPlain

Calculate conflict sets
Algorithm 4.1 QuickXPlain(P, REQ)

Input: trusted knowledge (items) P; Set of requirements REQ
Output: minimal conflict set CS

if Oppeqi(P) = dor REQ = @then return @

else return QX' (P, 4 g, REQ);

Function QX' (P, B, 4, REQ)

if = dand oy(P) = dthen return &

if REQ = {r} then return {r};

let{r, ..., r,}=REQ;

let k be n/2;

REQ, ¢r,, ..., r,and REQ, €r1y,sy ..., IN;
A, ¢QX(P, B UREQ,, REQ,, REQ,);

A, <QX(P, B UA 2, A 2, REQ,);

return 4, U 4,;

-14 -

Example of QuickXPlain

| id | Price(®)
P, 148 8.0 4x 2.5 no no yes
P 182 8.0 5x% 2.7 yes yes no
Py 189 8.0 10x% 2.5 yes yes no
P 196 10.0 12x 2.7 yes no yes
P 151 7.1 3% 3.0 yes yes no
P 199 9.0 3% 3.0 yes yes no
P, 259 10.0 3% 3.0 yes yes no
P 278 9.1 10x 3.0 yes yes yes

= REQ={r1:prices150, r2:opt-zoom=5x, r3:sound=yes, r4:waterproof=yes}

() QX‘(P {1, I}, {1y, T}, {Fa 14})

(1) QX(P, {ry, 5, 13, 14})

LZ r [Fs¥33

(2) QX(P, {}, {}, {ry, 1o, T3, T4})

SN L YN T
(4) QX(P. {1 {1 {rp. r2b)
iry)

(5) QX‘(P. {r,}, {r:}, {r})

W,

v {r1 }

(6) QX'(P, {roh, {roh {ry})

- 15 -

Repairs for unsatisfied requirements

= |dentify possible adaptations

= Or query the product table P with n[attributes(d)]oc[REQ-d](P)
— nfattributes(d1)]o[REQ-d1](P) = {price=278, opt-zoom=10x}
— nfattributes(d2)]o[REQ-d2](P) = {price=182, waterproof=no}
— nfattributes(d3)]o[REQ-d3](P) = {opt-zoom=4x, sound=no}

i
278 10x% V V

Rep,
Rep, 182 v v no

Rep, v 4x no v

-16 -

Ranking the items

= Multi-attribute utility theory

— each item is evaluated according to a predefined set of dimensions that provide
an aggregated view on the basic item properties

= E.g. quality and economy are dimensions in the domain of digital cameras

e Ly ecoom |
5 10

price <250
>250 10 5
mpix <8 4 10
>8 10 6
opt-zoom <9 6 9
>9 10 6
LCD-size 2.7 6 10
>2.7 9 5
movies Yes 10
no 3 10
sound Yes 10 8
no 7 10
waterproof Yes 10 6
no 8 10

-17 -

Item utility for customers

= Customer specific interest

Cu, 80% 20%

Cu, 40% 60%

= Calculation of Utility

P, 2(5,4,6,6,3,7,10) = 41 > (10,10,9,10,10,10,6) = 65 45.8 [8] 55.4 [6]
P, >(5,4,6,6,10,10,8) = 49 2 (10,10,9,10,7,8,10) = 64 52.0 [7] 58.0 [1]
P, 2(5,4,10,6,10,10,8) = 53 2 (10,10,6,10,7,8,10) = 61 54.6 [5] 57.8 [2]
P,%(5,10,10,6,10,7,10) = 58 2 (10,6,6,10,7,10,6) = 55 57.4 [4] 56.2 [4]
P.3(5,4,6,10,10,10,8) = 53 ¥ (10,10,9,6,7,8,10) = 60 54.4 [6] 57.2 3]
Ps2(5,10,6,9,10,10,8) = 58 2 (10,6,9,5,7,8,10) = 55 57.4 3] 56.2 [9]
P,3(10,10,6,9,10,10,8) = 63 3 (5,6,9,5,7,8,10) = 50 60.4 [2] 55.2 [7]

P¢(10,10,10,9,10,10,10) = 69 2 (5,6,6,5,7,8,6) =43 63.8 [1] 53.4 [8]

Case-based recommender systems

= |tems are retrieved using similarity measures

= Distance similarity

> REQ Wr * SIm(p, 1) SSERM

ZreREQ Wr

similarity(p, REQ) =

i

= Def.

— sim (p, r) expresses for each item attribute value ¢r (p) its distance to the
customer requirement r € REQ.

— wris the importance weight for requirement r

= |n real world, customer would like to
— maximize certain properties. i.e. resolution of a camera, "more is better"(MIB)
— minimize certain properties. i.e. price of a camera, "less is better"(LIB)

-19 -

Interacting with case-based recommenders

price

Customers maybe not know what they are seeking
Critiquing is an effective way to support such navigations

Customers specify their change requests (price or mpix) that are not
satisfied by the current item (entry item)

entry item
(recommended item) . . ,
X entry item threshold: items with
y | . (recommended item) a lower price than the entry
N ', more 1 item are considered further
v exPi:Slve . AN \“ . 4
less %~ 1 @ ® o
mpix L @ o . . 0®
‘- _y more Critique on price price 9
. . .'.))) mplx < \bl ./ L':‘ 7z
: ® most similar item o , @
[N4 o0 Vv
cheaper cheapg
~ / ~
e K 7
mplx most similar item mpix

- 20 -

Compound critiques

= QOperate over multiple properties can improve the efficiency of

recommendation dialogs

entry item

(recommended item)

threshold: items with
a higher mpix than the entry
item are considered further

s
s

A \“\ //f .
\ e
N @ threshold: items with
VT a® a lower price than the entry
. \ @ item are considered further
@
price v @
p t o N .
T, -_.-/ o
o0 o
> | 9 - . . »
® new most similar item
" >
mpix

-21 -

Dynamic critiques

= Association rule mining

= Basic steps for dynamic critiques

q: initial set of requirements
Cl: all the available items

K: maximum number of
compound critiques

Omin: Minimum support value for
calculated association rules.

Algorithm 4.4 DynamicCritiquing(q,Cl)
Input: Initial user query q; Candidate items Cl;
number of compound critiques per cycle k;

minimum support for identified association rules o,,,

procedure DynamicCritiquing(q, Cl, k, 0,,,)
repeat

r ¢&ItemRecommend(q, Cl);

CC ¢<CompoundCritiques(r, Cl, k, 0,,,.);

q € UserReview(r, Cl, CC);

until empty(q)

end procedure

procedure ItemRecommend(q, Cl)

Cl & {ci €CI: satisfies(ci, q)};

r €mostsimilar(Cl, q);

returnr;

end procedure
Review(r, CI, CC)

q €critique(r, CC);

Cl&Cl-r;

return g;

end procedure

[Py [N I Py
prutcuuic usern

procedure CompoundCritiques(r, Cl, k, 6,,;,)
CP &CritiquePatterns(r, Cl);

CC & Apriori(CP, omin);

SC &SelectCritiques(CC, k);

return SC;

end procedure

in

-22 -

Example: sales dialogue financial services

personal
data?

run time of

intended
loan?

A purpose?

In the financial services domain

— sales representatives do not know which
services should be recommended

requirements
elicitation

— improve the overall productivity of sales
representatives

[true] i

monthly
rate?

owner?

credit-
.. worthiness existing n - ipti
exsing ey —— Resembles call-center scripting
estate? 7 — best-practice sales dialogues
[true] f i . .
— states, transitions with predicates
product (loan)
advisory and |{ = Research results
selection _ _
— support for KA and validation
odn
[truelJ, \ = node properties (reachable, extensible,
detailed deterministic)
calculation and Product,
result (loan)

presentation

- 23 -

Example software: VITA sales support

recommendation process: requirements
identification, creditworthiness check ,
VITA - Virtuelle Beratung Kombiprodukte T 00T TRl

& Eingslaggt: L » ! ,
*dmim::;psg;r Bedarfsermittlung &8 Bonitdtsprufungs Bausparends Ergehbnis
| i
Eundenanforderungen: -
current user
= Kreditsumme: 1,00 {in Mo HUF) = Laufzeit: 160 (in Monaten)
of VITA Eundenalter: 37 Jah = Verwendungszweck:
il A Urmn esine Meuschnung zu kaufen
s Ausrahlungszeitpunkt: 2007.03.01 = Ereditw@hrung: in HUF
= Summe Monatsraten; 20.000 HUF = Bauwsparsumme; 2.4860.000 HUF
one m Daher wurden folgende pradukte ermittelt:
= req.iremerl‘.'. articulated
recommendation
"8 Duo - gefardert - stast. Zn¢ | by the customer
drtjdk egymadst.
m Kombiprodukt: 1.259.008 HUF Anbieter: Erste Bank
Bankdarlehen: 1577379 HUF Zingeatz+Gebiihr:d4,45%4+2,28%
Baratungen verwalten: monat. Belastung 1. Jahe: I5 647 HUF Bauspargebiihr: 37.250 HUF
|- Bitte auswahlen -] s Produkt-Details s Warum disse
e e ______._--""_7'
i P 5 explanation as to why the
uo = gefordert = pfandbrie
jok egymast. product is recommended
Kombiprodulkt: 1.325.256 HUF Anbieter: Erste Bank
Bankdarlehen: 1.72548% HUF Zinssatz+Gebihr: 5,99%4+2,28%
monat. Belastunag 1. Jahr 6 892 HUF Bauspargebihr: 37.250 HUF
further details S e ——— -

regarcing product [aunicx

LOGOUT HMEUSTART HILFE FEEDBACH

Fundamento <E8=
Lakiisk@sszn e s e

Example: Critiquing

dfind your
dfavourite xestaurant

5

30€-50€

In Vienna you chose:

+43 1123123123

Marighilferstrasse 123,
1010 Wien

Biergasthof

Local cuisine

local food, central in the city, weekend brunch, room with a view,
famous for beer, seasonal dishes, group bookings, open all day

For Graz we recommend:

Brauhof pOE=E

Local cuisine

+43 316 45 45 45

Brauhofstrasse 45,
8023 Graz

local food, own beer, weekend lunch, open all day, private function room,
famous for beer, seasonal dishes, group bookings, good transport connection

Less 55

Traditional | [Creative J

| Micer | | Cuisine | More Quiet |

| Livelier |

Similarity-based navigation in item
space

Compound critiques

— more efficient navigation than with
unit critiques

— mining of frequent patterns

Dynamic critiques

— only applicable compound critiques
proposed

Incremental critiques

— considers history

Adaptive suggestions

— suggest items that allow to best refine
user's preference model

- 25 -

Summary

= Knowledge-based recommender systems
— constraint-based
— case-based

= Limitations

— cost of knowledge acquisition
= from domain experts
= from users
= from web resources

— accuracy of preference models
= very fine granular preference models require many interaction cycles
= collaborative filtering models preference implicitly

— independence assumption can be challenged
= preferences are not always independent from each other

- 26 -

